Rules implementation
Message update rules
ReactiveMP.rule — Functionrule(fform, on, vconstraint, mnames, messages, qnames, marginals, meta, __node)This function is used to compute an outbound message for a given node
Arguments
fform: Functional form of the node in form of a type of the node, e.g.::Type{ <: NormalMeanVariance }or::typeof(+)on: Outbound interface's tag for which a message has to be computed, e.g.::Val{:out}or::Val{:μ}vconstraint: Variable constraints for an outbound interface, e.g.MarginalisationorMomentMatchingmnames: Ordered messages names in form of the Val type, eg.::Val{ (:mean, :precision) }messages: Tuple of message of the same length asmnamesused to compute an outbound messageqnames: Ordered marginal names in form of the Val type, eg.::Val{ (:mean, :precision) }marginals: Tuple of marginals of the same length asqnamesused to compute an outbound messagemeta: Extra meta informationaddons: Extra addons information__node: Node reference
For all available rules, see ReactiveMP.print_rules_table().
See also: @rule, marginalrule, @marginalrule
ReactiveMP.@rule — Macro@rule NodeType(:Edge, Constraint) (Arguments..., [ meta::MetaType ]) = begin
# rule body
return ...
endThe @rule macro help to define new methods for the rule function. It works particularly well in combination with the @node macro. It has a specific structure, which must specify:
NodeType: must be a valid Julia type. If some attempt to define a rule for a Julia function (for example+), usetypeof(+)Edge: edge label, usually edge labels are defined with the@nodemacroConstrain: DEPRECATED, please just use theMarginalisationlabelArguments: defines a list of the input arguments for the rulem_*prefix indicates that the argument is of typeMessagefrom the edge*q_*prefix indicates that the argument is of typeMarginalon the edge*
Meta::MetaType- optionally, a user can specify aMetaobject of typeMetaType. This can be useful is some attempts to try different rules with different approximation methods or if the rule itself requires some temporary storage or cache. The default meta isnothing.
Here are various examples of the @rule macro usage:
- Belief-Propagation (or Sum-Product) message update rule for the
NormalMeanVariancenode toward the:μedge with theMarginalisationconstraint. Input arguments arem_outandm_v, which are the messages from the corresponding edgesoutandvand have the typePointMass.
@rule NormalMeanVariance(:μ, Marginalisation) (m_out::PointMass, m_v::PointMass) = NormalMeanVariance(mean(m_out), mean(m_v))- Mean-field message update rule for the
NormalMeanVariancenode towards the:μedge with theMarginalisationconstraint. Input arguments areq_outandq_v, which are the marginals on the corresponding edgesoutandvof typeAny.
@rule NormalMeanVariance(:μ, Marginalisation) (q_out::Any, q_v::Any) = NormalMeanVariance(mean(q_out), mean(q_v))- Structured Variational message update rule for the
NormalMeanVariancenode towards the:outedge with theMarginalisationconstraint. Input arguments arem_μ, which is a message from theμedge of typeUnivariateNormalDistributionsFamily, andq_v, which is a marginal on thevedge of typeAny.
@rule NormalMeanVariance(:out, Marginalisation) (m_μ::UnivariateNormalDistributionsFamily, q_v::Any) = begin
m_μ_mean, m_μ_cov = mean_cov(m_μ)
return NormalMeanVariance(m_μ_mean, m_μ_cov + mean(q_v))
endSee also: rule, marginalrule, [@marginalrule], @call_rule
ReactiveMP.@call_rule — Macro@call_rule NodeType(:edge, Constraint) (argument1 = value1, argument2 = value2, ..., [ meta = ..., addons = ... ])The @call_rule macro helps to call the rule method with an easier syntax. The structure of the macro is almost the same as in the @rule macro, but there is no begin ... end block, but instead each argument must have a specified value with the = operator.
The @call_rule accepts optional list of options before the functional form specification, for example:
@call_rule [ return_addons = true ] NodeType(:edge, Constraint) (argument1 = value1, argument2 = value2, ..., [ meta = ..., addons = ... ])The list of available options is:
return_addons- forces the@call_ruleto return the tuple of(result, addons)fallback- specifies the fallback rule to use in case the rule is not defined for the givenNodeTypeand specified arguments
See also: @rule, rule, @call_marginalrule
ReactiveMP.call_rule_make_node — Functioncall_rule_create_node(::Type{ NodeType }, fformtype)Creates a node object that will be used inside @call_rule macro.
ReactiveMP.call_rule_macro_parse_fn_args — Functioncall_rule_macro_parse_fn_args(inputs; specname, prefix, proxy)Do not use this function directly. This function is private and does not belong to the public API.
This function is used to parse an arguments tuple for message and marginal calling rules specification.
@call_rule MvNormalMeanPrecision(:out, Marginalisation) (m_μ = NormalMeanPrecision(...), m_τ = PointMass(...)) = begin
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
`arguments` vector
...
endAccepts a vector of (name, value) elements, specname, name prefix and proxy type. Returns parsed names without prefix and proxied values
See also: @rule
ReactiveMP.call_rule_is_node_required — Functioncall_rule_is_node_required(fformtype)Returns either CallRuleNodeRequired() or CallRuleNodeNotRequired() depending on if a specific fformtype requires an access to the corresponding node in order to compute a message update rule. Returns CallRuleNodeNotRequired() for all known functional forms by default and CallRuleNodeRequired() for all unknown functional forms.
ReactiveMP.rule_macro_parse_on_tag — Functionrule_macro_parse_on_tag(expression)Do not use this function directly. This function is private and does not belong to the public API.
This function is used to parse an on tag for message rules and marginal rules specification.
@rule MvNormalMeanPrecision(:out, Marginalisation) (...) = begin
^^^^
`on` tag
...
endor
@rule NormalMixture((:m, k), Marginalisation) (...) = begin
^^^^^^^
`on` tag
...
endAccepts either a quoted symbol expressions or a (name, index) tuple expression. Returns name expression, index expression and index initialisation expression.
See also: @rule
ReactiveMP.rule_macro_parse_fn_args — Functionrule_macro_parse_fn_args(inputs; specname, prefix, proxy)Do not use this function directly. This function is private and does not belong to the public API.
This function is used to parse an arguments tuple for message rules and marginal rules specification.
@rule MvNormalMeanPrecision(:out, Marginalisation) (m_μ::NormalMeanPrecision, m_τ::PointMass) = begin
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
`arguments` vector
...
endAccepts a vector of (name, type) elements, specname, name prefix and proxy type. Returns parsed names without prefix, proxied types and initialisation code block.
See also: @rule
ReactiveMP.rule_macro_check_fn_args — Functionrule_macro_check_fn_args(inputs; allowed_inputs, allowed_prefixes)This function checks if all inputs are either in the allowed_inputs or have prefixes in the allowed_prefixes.
See also: @rule
Marginal update rules
ReactiveMP.marginalrule — Functionmarginalrule(fform, on, mnames, messages, qnames, marginals, meta, __node)This function is used to compute a local joint marginal for a given node
Arguments
fform: Functional form of the node in form of a type of the node, e.g.::Type{ <: NormalMeanVariance }or::typeof(+)on: Local joint marginal tag , e.g.::Val{ :mean_precision }or::Val{ :out_mean_precision }mnames: Ordered messages names in form of the Val type, eg.::Val{ (:mean, :precision) }messages: Tuple of message of the same length asmnamesused to compute an outbound messageqnames: Ordered marginal names in form of the Val type, eg.::Val{ (:mean, :precision) }marginals: Tuple of marginals of the same length asqnamesused to compute an outbound messagemeta: Extra meta information__node: Node reference
See also: rule, @rule @marginalrule
ReactiveMP.@marginalrule — Macro@marginalrule NodeType(:Cluster) (Arguments..., [ meta::MetaType ]) = begin
# rule body
return ...
endThe @marginalrule macro help to define new methods for the marginalrule function. It works particularly well in combination with the @node macro. It has a specific structure, which must specify:
NodeType: must be a valid Julia type. If some attempt to define a rule for a Julia function (for example+), usetypeof(+)Cluster: edge cluster that contains joined edge labels with the_symbol. Usually edge labels are defined with the@nodemacroArguments: defines a list of the input arguments for the rulem_*prefix indicates that the argument is of typeMessagefrom the edge*q_*prefix indicates that the argument is of typeMarginalon the edge*
Meta::MetaType- optionally, a user can specify aMetaobject of typeMetaType. This can be useful is some attempts to try different rules with different approximation methods or if the rule itself requires some temporary storage or cache. The default meta isnothing.
The @marginalrule can return a NamedTuple in the return statement. This would indicate some variables in the joint marginal for the Cluster are independent and the joint itself is factorised. For example if some attempts to compute a marginal for the q(x, y) it is possible to return (x = ..., y = ...) as the result of the computation to indicate that q(x, y) = q(x)q(y).
Here are various examples of the @marginalrule macro usage:
- Marginal computation rule around the
NormalMeanPrecisionnode for theq(out, μ). The rule accepts argumentsm_outandm_μ, which are the messages
from the out and μ edges respectively, and q_τ which is the marginal on the edge τ.
@marginalrule NormalMeanPrecision(:out_μ) (m_out::UnivariateNormalDistributionsFamily, m_μ::UnivariateNormalDistributionsFamily, q_τ::Any) = begin
xi_out, W_out = weightedmean_precision(m_out)
xi_μ, W_μ = weightedmean_precision(m_μ)
W_bar = mean(q_τ)
W = [W_out+W_bar -W_bar; -W_bar W_μ+W_bar]
xi = [xi_out; xi_μ]
return MvNormalWeightedMeanPrecision(xi, W)
end- Marginal computation rule around the
NormalMeanPrecisionnode for theq(out, μ). The rule accepts argumentsm_outandm_μ, which are the messages from the
out and μ edges respectively, and q_τ which is the marginal on the edge τ. In this example the result of the computation is a NamedTuple
@marginalrule NormalMeanPrecision(:out_μ) (m_out::PointMass, m_μ::UnivariateNormalDistributionsFamily, q_τ::Any) = begin
return (out = m_out, μ = prod(ClosedProd(), NormalMeanPrecision(mean(m_out), mean(q_τ)), m_μ))
endReactiveMP.@call_marginalrule — Macro@call_marginalrule NodeType(:edge) (argument1 = value1, argument2 = value2, ..., [ meta = ... ])The @call_marginalrule macro helps to call the marginalrule method with an easier syntax. The structure of the macro is almost the same as in the @marginalrule macro, but there is no begin ... end block, but instead each argument must have a specified value with the = operator.
See also: @marginalrule, marginalrule, @call_rule
Testing utilities for the update rules
ReactiveMP.@test_rules — Macro@test_rules [options] rule [ test_entries... ]The @test_rules macro generates test cases for message update rules for probabilistic programming models that follow the "message passing" paradigm. It takes a rule specification as input and generates a set of tests based on that specification. This macro is provided by ReactiveMP.
Note: The Test module must be imported explicitly. The @test_rules macro tries to use the @test macro, which must be defined globally.
Arguments
The macro takes three arguments:
options: An optional argument that specifies the options for the test generation process. See below for details.rule: A rule specification in the same format as the@rulemacro, e.g.Beta(:out, Marginalisation)orNormalMeanVariance(:μ, Marginalisation).test_entries: An array of named tuples(input = ..., output = ...). Theinputentry has the same format as the input for the@rulemacro. Theoutputentry specifies the expected output.
Options
The following options are available:
check_type_promotion: By default, this option is set tofalse. If set totrue, the macro generates an extensive list of extra tests that aim to check the correct type promotion within the tests. For example, if all inputs are of typeFloat32, then the expected output should also be of typeFloat32. See theparamfloattypeandconvert_paramfloattypefunctions for details.atol: Sets the desired accuracy for the tests. The tests use thecustom_rule_isapproxfunction fromReactiveMPto check if outputs are approximately the same. This argument can be either a single number or an array ofkey => valuepairs.extra_float_types: A set of extra float types to be used in thecheck_type_promotiontests. This argument has no effect ifcheck_type_promotionis set tofalse.
The default values for the atol option are:
Float32:1e-4Float64:1e-6BigFloat:1e-8
Examples
@test_rules [check_type_promotion = true] Beta(:out, Marginalisation) [
(input = (m_a = PointMass(1.0), m_b = PointMass(2.0)), output = Beta(1.0, 2.0)),
(input = (m_a = PointMass(2.0), m_b = PointMass(2.0)), output = Beta(2.0, 2.0)),
(input = (m_a = PointMass(3.0), m_b = PointMass(3.0)), output = Beta(3.0, 3.0))
]
@test_rules [check_type_promotion = true] Beta(:out, Marginalisation) [
(input = (q_a = PointMass(1.0), q_b = PointMass(2.0)), output = Beta(1.0, 2.0)),
(input = (q_a = PointMass(2.0), q_b = PointMass(2.0)), output = Beta(2.0, 2.0)),
(input = (q_a = PointMass(3.0), q_b = PointMass(3.0)), output = Beta(3.0, 3.0))
]See also: ReactiveMP.@test_marginalrules
ReactiveMP.@test_marginalrules — Macro@test_marginalrules [options] rule [ test_entries... ]Effectively the same as @test_rules, but for marginal computation rules. See the documentation for @test_rules for more info.
See also: ReactiveMP.@test_rules
Rule fallbacks
ReactiveMP.NodeFunctionRuleFallback — TypeNodeFunctionRuleFallback(extractfn = mean)A fallback rule for Stochastic nodes that uses a specified function (default: mean) to transform messages and marginals into a value. It calls the nodefunction method to create the message.
When a node is defined with the @node macro:
1. The nodefunction typically calls logpdf associated with the node's distribution. 2. The first edge in the @node specification is used to evaluate logpdf at. 3. Other edges are used to instantiate the associated distribution object.
julia> using ReactiveMP, BayesBase, Distributions
julia> struct MyBeta{A, B} <: ContinuousUnivariateDistribution
a::A
b::B
end
julia> BayesBase.logpdf(d::MyBeta, x) = logpdf(Beta(d.a, d.b), x)
julia> BayesBase.insupport(d::MyBeta, x::Real) = true
julia> @node MyBeta Stochastic [out, a, b]
julia> message = @call_rule [fallback = NodeFunctionRuleFallback()] MyBeta(:out, Marginalisation) (m_a = Beta(2, 3), m_b = Beta(3, 2));
julia> logpdf(message, 0.5)
-0.5017644952110732
julia> message = @call_rule [fallback = NodeFunctionRuleFallback(mode)] MyBeta(:out, Marginalisation) (m_a = Beta(2, 3), m_b = Beta(3, 2)); # evaluate at `mode`
julia> logpdf(message, 0.5)
-0.5954237415153454ReactiveMP.nodefunction — Functionnodefunction(::Type{T}) where {T}Returns a function that represents a node of type T. The function typically takes arguments that represent the node's input and output variables in the same order as defined in the @node macro.
Table of available update rules
The list below has been automatically generated with the ReactiveMP.print_rules_table() function.
| Node | Output | Inputs | Meta |
|---|---|---|---|
| dot | in2 | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in1) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | |||
| dot | in2 | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in1) :: BayesBase.PointMass | |||
| dot | in1 | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in2) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | |||
| dot | in1 | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in2) :: BayesBase.PointMass | |||
| dot | out | μ(in1) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in2) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | |||
| dot | out | μ(in1) :: BayesBase.PointMass | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in2) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | |||
| dot | out | μ(in1) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in2) :: BayesBase.PointMass | |||
| - | out | μ(in1) :: Any | |
| μ(in2) :: Any | |||
| - | in1 | μ(out) :: Any | |
| μ(in2) :: Any | |||
| - | in2 | μ(out) :: Any | |
| μ(in1) :: Any | |||
| + | in2 | μ(out) :: Any | |
| μ(in1) :: Any | |||
| + | out | μ(in1) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(in2) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| + | out | μ(in1) :: ExponentialFamily.MvNormalWeightedMeanPrecision{T, Vector{T}, Matrix{T}} | Nothing |
| μ(in2) :: ExponentialFamily.MvNormalWeightedMeanPrecision{T, Vector{T}, Matrix{T}} | |||
| + | out | μ(in1) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(in2) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| + | out | μ(in1) :: Distributions.Distribution | Nothing |
| μ(in2) :: Distributions.Distribution | |||
| + | out | μ(in1) :: BayesBase.PointMass | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | out | μ(in1) :: ExponentialFamily.NormalMeanPrecision | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | out | μ(in1) :: BayesBase.PointMass | Nothing |
| μ(in2) :: ExponentialFamily.NormalMeanPrecision | |||
| + | out | μ(in1) :: ExponentialFamily.MvNormalMeanPrecision | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | out | μ(in1) :: BayesBase.PointMass | Nothing |
| μ(in2) :: ExponentialFamily.MvNormalMeanPrecision | |||
| + | out | μ(in1) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | out | μ(in1) :: BayesBase.PointMass | Nothing |
| μ(in2) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| + | out | μ(in1) :: ExponentialFamily.MvNormalWeightedMeanPrecision{T1, Vector{T1}, Matrix{T1}} | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | out | μ(in1) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | out | μ(in1) :: BayesBase.PointMass | Nothing |
| μ(in2) :: ExponentialFamily.MvNormalWeightedMeanPrecision{T1, Vector{T1}, Matrix{T1}} | |||
| + | out | μ(in1) :: BayesBase.PointMass | Nothing |
| μ(in2) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| + | in1 | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(in2) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| + | in1 | μ(out) :: ExponentialFamily.MvNormalWeightedMeanPrecision{T, Vector{T}, Matrix{T}} | Nothing |
| μ(in2) :: ExponentialFamily.MvNormalWeightedMeanPrecision{T, Vector{T}, Matrix{T}} | |||
| + | in1 | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(in2) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| + | in1 | μ(out) :: BayesBase.PointMass | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | in1 | μ(out) :: BayesBase.PointMass | Nothing |
| μ(in2) :: ExponentialFamily.NormalMeanPrecision | |||
| + | in1 | μ(out) :: ExponentialFamily.NormalMeanPrecision | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | in1 | μ(out) :: BayesBase.PointMass | Nothing |
| μ(in2) :: ExponentialFamily.MvNormalMeanPrecision | |||
| + | in1 | μ(out) :: ExponentialFamily.MvNormalMeanPrecision | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | in1 | μ(out) :: BayesBase.PointMass | Nothing |
| μ(in2) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| + | in1 | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | in1 | μ(out) :: BayesBase.PointMass | Nothing |
| μ(in2) :: ExponentialFamily.MvNormalWeightedMeanPrecision{T1, Vector{T1}, Matrix{T1}} | |||
| + | in1 | μ(out) :: BayesBase.PointMass | Nothing |
| μ(in2) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| + | in1 | μ(out) :: ExponentialFamily.MvNormalWeightedMeanPrecision{T1, Vector{T1}, Matrix{T1}} | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| + | in1 | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(in2) :: BayesBase.PointMass | |||
| * | A | μ(out) :: ExponentialFamily.MvNormalMeanCovariance | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass{<:AbstractVector} | |||
| * | A | μ(out) :: ExponentialFamily.MvNormalMeanCovariance | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass{<:AbstractMatrix} | |||
| * | A | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| * | A | μ(out) :: Distributions.UnivariateDistribution | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: Distributions.UnivariateDistribution | |||
| * | A | μ(out) :: BayesBase.PointMass | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass | |||
| * | A | μ(out) :: ExponentialFamily.GammaDistributionsFamily | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass{<:Real} | |||
| * | A | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass{<:AbstractMatrix} | |||
| * | A | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass{<:AbstractVector} | |||
| * | A | μ(out) :: F | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass{<:Real} | |||
| * | in | μ(A) :: BayesBase.PointMass{<:LinearAlgebra.UniformScaling} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(out) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | |||
| * | in | μ(A) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(out) :: BayesBase.PointMass{<:Real} | |||
| * | in | μ(A) :: BayesBase.PointMass{<:Real} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(out) :: ExponentialFamily.MvNormalWeightedMeanPrecision | |||
| * | in | μ(A) :: BayesBase.PointMass{<:Real} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(out) :: ExponentialFamily.MvNormalMeanPrecision | |||
| * | in | μ(A) :: BayesBase.PointMass{<:Real} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(out) :: ExponentialFamily.MvNormalMeanCovariance | |||
| * | in | μ(A) :: BayesBase.PointMass{<:Real} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| * | in | μ(out) :: ExponentialFamily.MvNormalMeanCovariance | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(A) :: BayesBase.PointMass{<:AbstractVector} | |||
| * | in | μ(out) :: ExponentialFamily.MvNormalMeanCovariance | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(A) :: BayesBase.PointMass{<:AbstractMatrix} | |||
| * | in | μ(out) :: F | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(A) :: BayesBase.PointMass{<:Real} | |||
| * | in | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(A) :: BayesBase.PointMass{<:AbstractVector} | |||
| * | in | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(A) :: BayesBase.PointMass{<:AbstractMatrix} | |||
| * | in | μ(out) :: ExponentialFamily.GammaDistributionsFamily | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(A) :: BayesBase.PointMass{<:Real} | |||
| * | in | μ(out) :: BayesBase.PointMass | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(A) :: BayesBase.PointMass | |||
| * | in | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(A) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| * | in | μ(out) :: Distributions.UnivariateDistribution | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(A) :: Distributions.UnivariateDistribution | |||
| * | out | μ(A) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass{<:AbstractVector} | |||
| * | out | μ(A) :: BayesBase.PointMass{<:AbstractVector} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| * | out | μ(A) :: F | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass{<:AbstractMatrix} | |||
| * | out | μ(A) :: BayesBase.PointMass{<:AbstractMatrix} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: F | |||
| * | out | μ(A) :: ExponentialFamily.GammaDistributionsFamily | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass{<:Real} | |||
| * | out | μ(A) :: BayesBase.PointMass{<:Real} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: ExponentialFamily.GammaDistributionsFamily | |||
| * | out | μ(A) :: BayesBase.PointMass | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass | |||
| * | out | μ(A) :: BayesBase.PointMass{<:Real} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| * | out | μ(A) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| * | out | μ(A) :: Distributions.UnivariateDistribution | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: Distributions.UnivariateDistribution | |||
| * | out | μ(A) :: BayesBase.PointMass{<:LinearAlgebra.UniformScaling} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | |||
| * | out | μ(A) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: BayesBase.PointMass{<:Real} | |||
| * | out | μ(A) :: BayesBase.PointMass{<:Real} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: ExponentialFamily.MvNormalWeightedMeanPrecision | |||
| * | out | μ(A) :: BayesBase.PointMass{<:Real} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: ExponentialFamily.MvNormalMeanPrecision | |||
| * | out | μ(A) :: BayesBase.PointMass{<:Real} | Union{Nothing, MatrixCorrectionTools.AbstractCorrectionStrategy} |
| μ(in) :: ExponentialFamily.MvNormalMeanCovariance | |||
| ExponentialFamily.MvNormalMeanCovariance | Σ | q(out) :: Any | Nothing |
| q(μ) :: Any | |||
| ExponentialFamily.MvNormalMeanCovariance | Σ | q(out_μ) :: Any | Nothing |
| ExponentialFamily.MvNormalMeanCovariance | μ | μ(out) :: BayesBase.PointMass | Nothing |
| μ(Σ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanCovariance | μ | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(Σ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanCovariance | μ | q(out) :: BayesBase.PointMass | Nothing |
| q(Σ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanCovariance | μ | q(out) :: Any | Nothing |
| q(Σ) :: Any | |||
| ExponentialFamily.MvNormalMeanCovariance | μ | μ(out) :: BayesBase.PointMass | Nothing |
| q(Σ) :: Any | |||
| ExponentialFamily.MvNormalMeanCovariance | μ | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(Σ) :: Any | |||
| ExponentialFamily.MvNormalMeanCovariance | out | μ(μ) :: BayesBase.PointMass | Nothing |
| μ(Σ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanCovariance | out | μ(μ) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(Σ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanCovariance | out | q(μ) :: BayesBase.PointMass | Nothing |
| q(Σ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanCovariance | out | q(μ) :: Any | Nothing |
| q(Σ) :: Any | |||
| ExponentialFamily.MvNormalMeanCovariance | out | μ(μ) :: BayesBase.PointMass | Nothing |
| q(Σ) :: Any | |||
| ExponentialFamily.MvNormalMeanCovariance | out | μ(μ) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(Σ) :: Any | |||
| Probit | in | q(out) :: BayesBase.PointMass | Union{Nothing, ProbitMeta} |
| Probit | in | μ(out) :: Union{BayesBase.PointMass, Distributions.Bernoulli} | Union{Nothing, ProbitMeta} |
| Probit | in | μ(in) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, ProbitMeta} |
| q(out) :: BayesBase.PointMass | |||
| Probit | in | μ(out) :: Union{BayesBase.PointMass, Distributions.Bernoulli} | Union{Nothing, ProbitMeta} |
| μ(in) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| Probit | out | μ(in) :: BayesBase.PointMass | Union{Nothing, ProbitMeta} |
| Probit | out | q(in) :: BayesBase.PointMass | Union{Nothing, ProbitMeta} |
| Probit | out | μ(in) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Union{Nothing, ProbitMeta} |
| BIFMHelper | in | μ(out) :: Any | Nothing |
| BIFMHelper | out | q(in) :: Any | Nothing |
| NOT | in | μ(out) :: Distributions.Bernoulli | Nothing |
| NOT | out | μ(in) :: Distributions.Bernoulli | Nothing |
| NormalMixture{N} | switch | q(out) :: activeMP.ManyOf{<:NTuple{ | Nothing |
| q(m) :: ReactiveMP.ManyOf{<:NTuple{ | |||
| q(p) :: Any | |||
| NormalMixture | m | q(out) :: Any | Nothing |
| q(switch) :: Union{BayesBase.PointMass{<:AbstractVector}, Distributions.Bernoulli, Distributions.Categorical{P} where P<:Real} | |||
| q(p) :: Any | |||
| NormalMixture | m | q(out) :: Any | Nothing |
| q(switch) :: BayesBase.PointMass{<:Real} | |||
| q(p) :: Any | |||
| NormalMixture | p | q(out) :: Any | Nothing |
| q(switch) :: BayesBase.PointMass{<:Real} | |||
| q(m) :: Any | |||
| NormalMixture | p | q(out) :: Any | Nothing |
| q(switch) :: Any | |||
| q(m) :: Any | |||
| NormalMixture{N} | out | q(switch) :: activeMP.ManyOf{<:NTuple{ | Nothing |
| q(m) :: ReactiveMP.ManyOf{<:NTuple{ | |||
| q(p) :: Any | |||
| Flow | in | μ(out) :: ExponentialFamily.MvNormalMeanCovariance | FlowMeta{M, <:Linearization} |
| Flow | in | μ(out) :: ExponentialFamily.MvNormalMeanPrecision | FlowMeta{M, <:Linearization} |
| Flow | in | μ(out) :: ExponentialFamily.MvNormalWeightedMeanPrecision | FlowMeta{M, <:Linearization} |
| Flow | in | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | FlowMeta{M, <:Unscented} |
| Flow | out | μ(in) :: ExponentialFamily.MvNormalMeanCovariance | FlowMeta{M, <:Linearization} |
| Flow | out | μ(in) :: ExponentialFamily.MvNormalMeanPrecision | FlowMeta{M, <:Linearization} |
| Flow | out | μ(in) :: ExponentialFamily.MvNormalWeightedMeanPrecision | FlowMeta{M, <:Linearization} |
| Flow | out | μ(in) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | FlowMeta{M, <:Unscented} |
| Distributions.Bernoulli | p | μ(out) :: BayesBase.PointMass | Nothing |
| Distributions.Bernoulli | p | q(out) :: BayesBase.PointMass | Nothing |
| Distributions.Bernoulli | p | q(out) :: Distributions.Bernoulli | Nothing |
| Distributions.Bernoulli | p | q(out) :: Distributions.Categorical{P} where P<:Real | Nothing |
| Distributions.Bernoulli | out | μ(p) :: Distributions.Beta | Nothing |
| Distributions.Bernoulli | out | μ(p) :: BayesBase.PointMass | Nothing |
| Distributions.Bernoulli | out | q(p) :: BayesBase.PointMass | Nothing |
| Distributions.Bernoulli | out | q(p) :: Any | Nothing |
| ExponentialFamily.MvNormalWeightedMeanPrecision | out | μ(ξ) :: BayesBase.PointMass | Nothing |
| μ(Λ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalWeightedMeanPrecision | out | q(ξ) :: Any | Nothing |
| q(Λ) :: Any | |||
| ContinuousTransition | x | μ(y) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | ContinuousTransitionMeta |
| q(a) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| q(W) :: Any | |||
| ContinuousTransition | x | q(y) :: Any | ContinuousTransitionMeta |
| q(a) :: Any | |||
| q(W) :: Any | |||
| ContinuousTransition | a | q(y_x) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | ContinuousTransitionMeta |
| q(a) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| q(W) :: Any | |||
| ContinuousTransition | a | q(y) :: Any | ContinuousTransitionMeta |
| q(x) :: Any | |||
| q(a) :: Any | |||
| q(W) :: Any | |||
| ContinuousTransition | W | q(y_x) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | ContinuousTransitionMeta |
| q(a) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| ContinuousTransition | W | q(y) :: Any | ContinuousTransitionMeta |
| q(x) :: Any | |||
| q(a) :: Any | |||
| ContinuousTransition | y | μ(x) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | ContinuousTransitionMeta |
| q(a) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| q(W) :: Any | |||
| ContinuousTransition | y | q(x) :: Any | ContinuousTransitionMeta |
| q(a) :: Any | |||
| q(W) :: Any | |||
| BinomialPolya | β | μ(β) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | Union{Nothing, BinomialPolyaMeta} |
| q(y) :: Union{BayesBase.PointMass, Distributions.Multinomial} | |||
| q(x) :: BayesBase.PointMass | |||
| q(n) :: BayesBase.PointMass | |||
| BinomialPolya | y | q(x) :: BayesBase.PointMass | Union{Nothing, BinomialPolyaMeta} |
| q(n) :: Any | |||
| q(β) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | |||
| Distributions.Dirichlet | out | μ(a) :: BayesBase.PointMass{<:AbstractVector} | Nothing |
| Distributions.Dirichlet | out | q(a) :: BayesBase.PointMass{<:AbstractVector} | Nothing |
| Distributions.Gamma | out | μ(α) :: BayesBase.PointMass | Nothing |
| μ(θ) :: BayesBase.PointMass | |||
| Distributions.Gamma | out | q(α) :: Any | Nothing |
| q(θ) :: Any | |||
| InverseWishart | out | μ(ν) :: BayesBase.PointMass | Nothing |
| μ(S) :: BayesBase.PointMass | |||
| InverseWishart | out | μ(S) :: BayesBase.PointMass | Nothing |
| q(ν) :: Any | |||
| InverseWishart | out | μ(ν) :: BayesBase.PointMass | Nothing |
| q(S) :: Any | |||
| InverseWishart | out | q(ν) :: Any | Nothing |
| q(S) :: Any | |||
| Poisson | l | μ(out) :: BayesBase.PointMass | Nothing |
| Poisson | l | q(out) :: Any | Nothing |
| Poisson | out | μ(l) :: BayesBase.PointMass | Nothing |
| Poisson | out | q(l) :: ExponentialFamily.GammaDistributionsFamily | Nothing |
| ExponentialFamily.NormalMeanPrecision | μ | μ(out) :: ReactiveMP.ExponentialLinearQuadratic | |
| μ(τ) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanPrecision | μ | μ(out) :: ReactiveMP.ExponentialLinearQuadratic | |
| q(τ) :: Any | |||
| ExponentialFamily.NormalMeanPrecision | μ | μ(out) :: BayesBase.PointMass | Nothing |
| μ(τ) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanPrecision | μ | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(τ) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanPrecision | μ | μ(out) :: BayesBase.PointMass | Nothing |
| q(τ) :: Any | |||
| ExponentialFamily.NormalMeanPrecision | μ | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(τ) :: Any | |||
| ExponentialFamily.NormalMeanPrecision | μ | q(out) :: BayesBase.PointMass | Nothing |
| q(τ) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanPrecision | μ | q(out) :: Any | Nothing |
| q(τ) :: Any | |||
| ExponentialFamily.NormalMeanPrecision | out | μ(μ) :: BayesBase.PointMass | Nothing |
| μ(τ) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanPrecision | out | μ(μ) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(τ) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanPrecision | out | q(μ) :: BayesBase.PointMass | Nothing |
| q(τ) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanPrecision | out | q(μ) :: Any | Nothing |
| q(τ) :: Any | |||
| ExponentialFamily.NormalMeanPrecision | out | μ(μ) :: BayesBase.PointMass | Nothing |
| q(τ) :: Any | |||
| ExponentialFamily.NormalMeanPrecision | out | μ(μ) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(τ) :: Any | |||
| ExponentialFamily.NormalMeanPrecision | τ | q(out) :: Any | Nothing |
| q(μ) :: Any | |||
| ExponentialFamily.NormalMeanPrecision | τ | q(out_μ) :: Any | Nothing |
| MultinomialPolya | ψ | μ(ψ) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | MultinomialPolyaMeta |
| q(x) :: Any | |||
| q(N) :: Union{BayesBase.PointMass, Distributions.Binomial, Poisson, Distributions.Categorical{P} where P<:Real} | |||
| MultinomialPolya | x | q(N) :: Union{BayesBase.PointMass, Distributions.Binomial, Poisson, Distributions.Categorical{P} where P<:Real} | MultinomialPolyaMeta |
| q(ψ) :: Any | |||
| HalfNormal | out | q(v) :: BayesBase.PointMass | Nothing |
| ExponentialFamily.NormalMeanVariance | v | μ(out) :: BayesBase.PointMass | Nothing |
| μ(μ) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| ExponentialFamily.NormalMeanVariance | v | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(μ) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanVariance | v | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(μ) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | |||
| ExponentialFamily.NormalMeanVariance | v | q(out) :: Any | Nothing |
| q(μ) :: Any | |||
| ExponentialFamily.NormalMeanVariance | v | q(out_μ) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| ExponentialFamily.NormalMeanVariance | μ | μ(out) :: ReactiveMP.ExponentialLinearQuadratic | |
| μ(v) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanVariance | μ | μ(out) :: ReactiveMP.ExponentialLinearQuadratic | |
| q(v) :: Any | |||
| ExponentialFamily.NormalMeanVariance | μ | μ(out) :: BayesBase.PointMass | Nothing |
| μ(v) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanVariance | μ | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(v) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanVariance | μ | μ(out) :: BayesBase.PointMass | Nothing |
| q(v) :: Any | |||
| ExponentialFamily.NormalMeanVariance | μ | μ(out) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(v) :: Any | |||
| ExponentialFamily.NormalMeanVariance | μ | q(out) :: BayesBase.PointMass | Nothing |
| q(v) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanVariance | μ | q(out) :: Any | Nothing |
| q(v) :: Any | |||
| ExponentialFamily.NormalMeanVariance | out | μ(μ) :: BayesBase.PointMass | Nothing |
| μ(v) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanVariance | out | μ(μ) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(v) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanVariance | out | q(μ) :: BayesBase.PointMass | Nothing |
| q(v) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanVariance | out | q(μ) :: Any | Nothing |
| q(v) :: Any | |||
| ExponentialFamily.NormalMeanVariance | out | μ(μ) :: BayesBase.PointMass | Nothing |
| q(v) :: Any | |||
| ExponentialFamily.NormalMeanVariance | out | μ(μ) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(v) :: BayesBase.PointMass | |||
| ExponentialFamily.NormalMeanVariance | out | μ(μ) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(v) :: Any | |||
| GCV | x | μ(y) :: Union{ReactiveMP.ExponentialLinearQuadratic, ExponentialFamily.UnivariateNormalDistributionsFamily, ExponentialFamily.UnivariateGaussianDistributionsFamily} | Union{Nothing, GCVMetadata} |
| q(z) :: Any | |||
| q(κ) :: Any | |||
| q(ω) :: Any | |||
| GCV | x | q(y) :: Any | Union{Nothing, GCVMetadata} |
| q(z) :: Any | |||
| q(κ) :: Any | |||
| q(ω) :: Any | |||
| GCV | ω | q(y_x) :: Any | GCVMetadata |
| q(z) :: Any | |||
| q(κ) :: Any | |||
| GCV | ω | q(y) :: Any | GCVMetadata |
| q(x) :: Any | |||
| q(z) :: Any | |||
| q(κ) :: Any | |||
| GCV | y | μ(x) :: Union{ReactiveMP.ExponentialLinearQuadratic, ExponentialFamily.UnivariateNormalDistributionsFamily, ExponentialFamily.UnivariateGaussianDistributionsFamily} | Union{Nothing, GCVMetadata} |
| q(z) :: Any | |||
| q(κ) :: Any | |||
| q(ω) :: Any | |||
| GCV | y | q(x) :: Any | Union{Nothing, GCVMetadata} |
| q(z) :: Any | |||
| q(κ) :: Any | |||
| q(ω) :: Any | |||
| GCV | z | q(y_x) :: Any | GCVMetadata |
| q(κ) :: Any | |||
| q(ω) :: Any | |||
| GCV | z | q(y) :: Any | GCVMetadata |
| q(x) :: Any | |||
| q(κ) :: Any | |||
| q(ω) :: Any | |||
| GCV | κ | q(y_x) :: Any | GCVMetadata |
| q(z) :: Any | |||
| q(ω) :: Any | |||
| GCV | κ | q(y) :: Any | GCVMetadata |
| q(x) :: Any | |||
| q(z) :: Any | |||
| q(ω) :: Any | |||
| SoftDot | θ | q(y) :: Any | Nothing |
| q(x) :: Any | |||
| q(γ) :: Any | |||
| SoftDot | θ | q(y_x) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(γ) :: Any | |||
| SoftDot | γ | q(y) :: Any | Nothing |
| q(θ) :: Any | |||
| q(x) :: Any | |||
| SoftDot | γ | q(y_x) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(θ) :: Any | |||
| SoftDot | y | q(θ) :: Any | Nothing |
| q(x) :: Any | |||
| q(γ) :: Any | |||
| SoftDot | y | μ(x) :: Any | Nothing |
| q(θ) :: Any | |||
| q(γ) :: Any | |||
| SoftDot | x | q(y) :: Any | Nothing |
| q(θ) :: Any | |||
| q(γ) :: Any | |||
| SoftDot | x | μ(y) :: Union{ExponentialFamily.UnivariateNormalDistributionsFamily{T}, ExponentialFamily.UnivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(θ) :: Any | |||
| q(γ) :: Any | |||
| MvNormalMeanScalePrecision | out | q(μ) :: Any | Nothing |
| q(γ) :: Any | |||
| MvNormalMeanScalePrecision | out | μ(μ) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(γ) :: Any | |||
| MvNormalMeanScalePrecision | μ | q(out) :: Any | Nothing |
| q(γ) :: Any | |||
| MvNormalMeanScalePrecision | μ | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(γ) :: Any | |||
| MvNormalMeanScalePrecision | γ | q(out) :: Any | Nothing |
| q(μ) :: Any | |||
| MvNormalMeanScalePrecision | γ | q(out_μ) :: Any | Nothing |
| DiscreteTransition | T1 | μ(in) :: Distributions.DiscreteNonParametric | |
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | T1 | μ(in) :: Distributions.DiscreteNonParametric | |
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 3}} | |||
| DiscreteTransition | T1 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| μ(T3) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 5}} | |||
| DiscreteTransition | T1 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| μ(T3) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | T1 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 4}} | |||
| DiscreteTransition | T1 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | T1 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | T1 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 3}} | |||
| DiscreteTransition | T1 | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| μ(T3) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 5}} | |||
| DiscreteTransition | T1 | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| μ(T3) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | T1 | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 4}} | |||
| DiscreteTransition | T1 | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | a | q(out) :: BayesBase.PointMass{<:AbstractVector} | |
| q(in) :: Distributions.Categorical{P} where P<:Real | |||
| DiscreteTransition | a | q(out_in) :: BayesBase.Contingency | |
| DiscreteTransition | a | q(out_in) :: BayesBase.Contingency | |
| q(T1) :: BayesBase.PointMass{<:AbstractVector{T}} | |||
| DiscreteTransition | a | q(m_names) :: BayesBase.PointMass | |
| q(m_names) :: Distributions.Categorical{P} where P<:Real | |||
| q(m_names) :: BayesBase.Contingency | |||
| q(m_names) :: Distributions.Bernoulli} | |||
| DiscreteTransition | T3 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 5}} | |||
| DiscreteTransition | T3 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | T3 | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 5}} | |||
| DiscreteTransition | T3 | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | in | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| μ(T3) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | in | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| μ(T3) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 5}} | |||
| DiscreteTransition | in | μ(out) :: Distributions.DiscreteNonParametric | |
| q(a) :: BayesBase.PointMass{<:AbstractMatrix{T}} | |||
| DiscreteTransition | in | μ(out) :: Distributions.DiscreteNonParametric | |
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | in | μ(out) :: Distributions.DiscreteNonParametric | |
| q(a) :: ExponentialFamily.DirichletCollection | |||
| q(T1) :: BayesBase.PointMass{<:AbstractVector{T}} | |||
| DiscreteTransition | in | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 4}} | |||
| DiscreteTransition | in | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | in | μ(T1) :: Distributions.DiscreteNonParametric | |
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 3}} | |||
| DiscreteTransition | in | μ(T1) :: Distributions.DiscreteNonParametric | |
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | in | μ(T1) :: Distributions.DiscreteNonParametric | |
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 4}} | |||
| DiscreteTransition | in | μ(T1) :: Distributions.DiscreteNonParametric | |
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | in | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | in | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 3}} | |||
| DiscreteTransition | in | μ(T1) :: Distributions.DiscreteNonParametric | |
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| μ(T3) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 5}} | |||
| DiscreteTransition | in | μ(T1) :: Distributions.DiscreteNonParametric | |
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| μ(T3) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | in | q(out) :: BayesBase.PointMass{<:AbstractVector} | |
| q(a) :: BayesBase.PointMass{<:AbstractMatrix{T}} | |||
| DiscreteTransition | in | q(out) :: BayesBase.PointMass{<:AbstractVector} | |
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | out | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| μ(T3) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | out | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| μ(T3) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 5}} | |||
| DiscreteTransition | out | μ(in) :: Distributions.DiscreteNonParametric | |
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | out | μ(in) :: Distributions.DiscreteNonParametric | |
| q(a) :: BayesBase.PointMass{<:AbstractMatrix{T}} | |||
| DiscreteTransition | out | μ(in) :: Distributions.DiscreteNonParametric | |
| q(a) :: ExponentialFamily.DirichletCollection | |||
| q(T1) :: BayesBase.PointMass{<:AbstractVector{T}} | |||
| DiscreteTransition | out | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 4}} | |||
| DiscreteTransition | out | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | out | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | out | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 3}} | |||
| DiscreteTransition | T2 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 4}} | |||
| DiscreteTransition | T2 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | T2 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 5}} | |||
| DiscreteTransition | T2 | μ(out) :: Distributions.DiscreteNonParametric | |
| μ(in) :: Distributions.DiscreteNonParametric | |||
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | T2 | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | T2 | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| μ(T2) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 5}} | |||
| DiscreteTransition | T2 | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: ExponentialFamily.DirichletCollection | |||
| DiscreteTransition | T2 | μ(in) :: Distributions.DiscreteNonParametric | |
| μ(T1) :: Distributions.DiscreteNonParametric | |||
| q(out) :: BayesBase.PointMass{<:AbstractVector} | |||
| q(a) :: BayesBase.PointMass{<:AbstractArray{T, 4}} | |||
| DiscreteTransition | S | q(mar_names) :: ExponentialFamily.DirichletCollection | |
| q(mar_names) :: BayesBase.PointMass{<:AbstractArray} | |||
| q(mar_names) :: Distributions.DiscreteNonParametric | |||
| q(mar_names) :: BayesBase.Contingency | |||
| q(mar_names) :: Distributions.Bernoulli} | |||
| DiscreteTransition | S | μ(mes_names) :: BayesBase.PointMass | |
| μ(mes_names) :: Distributions.DiscreteNonParametric} | |||
| q(mar_names) :: ExponentialFamily.DirichletCollection | |||
| q(mar_names) :: BayesBase.PointMass{<:AbstractArray} | |||
| q(mar_names) :: Distributions.DiscreteNonParametric | |||
| q(mar_names) :: BayesBase.Contingency | |||
| q(mar_names) :: Distributions.Bernoulli} | |||
| Distributions.Uniform | out | q(a) :: BayesBase.PointMass | Nothing |
| q(b) :: BayesBase.PointMass | |||
| Distributions.Uniform | out | μ(a) :: BayesBase.PointMass | Nothing |
| q(b) :: BayesBase.PointMass | |||
| Distributions.Uniform | out | μ(b) :: BayesBase.PointMass | Nothing |
| q(a) :: BayesBase.PointMass | |||
| Distributions.Uniform | out | μ(a) :: BayesBase.PointMass | Nothing |
| μ(b) :: BayesBase.PointMass | |||
| Distributions.Categorical{P} where P<:Real | out | μ(p) :: Distributions.Dirichlet | Nothing |
| Distributions.Categorical{P} where P<:Real | out | q(p) :: Distributions.Dirichlet | Nothing |
| Distributions.Categorical{P} where P<:Real | out | μ(p) :: BayesBase.PointMass | Nothing |
| Distributions.Categorical{P} where P<:Real | out | q(p) :: BayesBase.PointMass | Nothing |
| Distributions.Categorical{P} where P<:Real | p | q(out) :: Distributions.Categorical{P} where P<:Real | Nothing |
| Distributions.Categorical{P} where P<:Real | p | q(out) :: BayesBase.PointMass{V} | Nothing |
| Distributions.Categorical{P} where P<:Real | p | q(out) :: Any | Nothing |
| DeltaFn | in | μ(in) :: Any | DeltaMeta{M} |
| q(ins) :: BayesBase.FactorizedJoint | |||
| DeltaFn | in | μ(in) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | DeltaMeta{M, Nothing} |
| q(ins) :: ExponentialFamily.JointNormal | |||
| DeltaFn | in | μ(out) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | DeltaMeta{M, I} |
| μ(ins) :: Nothing | |||
| DeltaFn | in | μ(out) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T}, ReactiveMP.ManyOf{<:NTuple{ | DeltaMeta{M, I} |
| μ(ins) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T}} | |||
| DeltaFn | in | μ(in) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | DeltaMeta{M, I} |
| q(ins) :: ExponentialFamily.JointNormal | |||
| DeltaFn | in | μ(out) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | DeltaMeta{M, I} |
| μ(ins) :: Nothing | |||
| DeltaFn | in | μ(out) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T}, ReactiveMP.ManyOf{<:NTuple{ | DeltaMeta{M, I} |
| μ(ins) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T}} | |||
| DeltaFn | out | μ(ins) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T}} | DeltaMeta{M} |
| DeltaFn | out | μ(ins) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T}} | DeltaMeta{M} |
| DeltaFn | out | q(ins) :: BayesBase.FactorizedJoint{P} | DeltaMeta{M} |
| DeltaFn | out | q(ins) :: BayesBase.FactorizedJoint | DeltaMeta{M} |
| AR | θ | q(y_x) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | ARMeta |
| q(γ) :: Any | |||
| AR | θ | q(y) :: Any | ARMeta |
| q(x) :: Any | |||
| q(γ) :: Any | |||
| AR | γ | q(y_x) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | ARMeta |
| q(θ) :: Any | |||
| AR | γ | q(y) :: Any | ARMeta |
| q(x) :: Any | |||
| q(θ) :: Any | |||
| AR | y | μ(x) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | ARMeta |
| q(θ) :: Any | |||
| q(γ) :: Any | |||
| AR | y | q(x) :: Any | ARMeta |
| q(θ) :: Any | |||
| q(γ) :: Any | |||
| AR | x | μ(y) :: Union{ExponentialFamily.NormalDistributionsFamily{T}, ExponentialFamily.GaussianDistributionsFamily{T}} where T | ARMeta |
| q(θ) :: Any | |||
| q(γ) :: Any | |||
| AR | x | q(y) :: Any | ARMeta |
| q(θ) :: Any | |||
| q(γ) :: Any | |||
| ExponentialFamily.MvNormalMeanPrecision | Λ | q(out) :: Any | Nothing |
| q(μ) :: Any | |||
| ExponentialFamily.MvNormalMeanPrecision | Λ | q(out_μ) :: Any | Nothing |
| ExponentialFamily.MvNormalMeanPrecision | μ | μ(out) :: BayesBase.PointMass | Nothing |
| μ(Λ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanPrecision | μ | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(Λ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanPrecision | μ | q(out) :: BayesBase.PointMass | Nothing |
| q(Λ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanPrecision | μ | q(out) :: Any | Nothing |
| q(Λ) :: Any | |||
| ExponentialFamily.MvNormalMeanPrecision | μ | μ(out) :: BayesBase.PointMass | Nothing |
| q(Λ) :: Any | |||
| ExponentialFamily.MvNormalMeanPrecision | μ | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(Λ) :: Distributions.Wishart | |||
| ExponentialFamily.MvNormalMeanPrecision | μ | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(Λ) :: Any | |||
| ExponentialFamily.MvNormalMeanPrecision | out | μ(μ) :: BayesBase.PointMass | Nothing |
| μ(Λ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanPrecision | out | μ(μ) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| μ(Λ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanPrecision | out | q(μ) :: BayesBase.PointMass | Nothing |
| q(Λ) :: BayesBase.PointMass | |||
| ExponentialFamily.MvNormalMeanPrecision | out | q(μ) :: Any | Nothing |
| q(Λ) :: Any | |||
| ExponentialFamily.MvNormalMeanPrecision | out | μ(μ) :: BayesBase.PointMass | Nothing |
| q(Λ) :: Any | |||
| ExponentialFamily.MvNormalMeanPrecision | out | μ(μ) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(Λ) :: Distributions.Wishart | |||
| ExponentialFamily.MvNormalMeanPrecision | out | μ(μ) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(Λ) :: Any | |||
| MvNormalMeanScaleMatrixPrecision | μ | q(out) :: Any | Nothing |
| q(γ) :: Any | |||
| q(G) :: Any | |||
| MvNormalMeanScaleMatrixPrecision | μ | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(γ) :: Any | |||
| q(G) :: Any | |||
| MvNormalMeanScaleMatrixPrecision | γ | q(out) :: Any | Nothing |
| q(μ) :: Any | |||
| q(G) :: Any | |||
| MvNormalMeanScaleMatrixPrecision | γ | q(out_μ) :: Any | Nothing |
| q(G) :: Any | |||
| MvNormalMeanScaleMatrixPrecision | out | q(μ) :: Any | Nothing |
| q(γ) :: Any | |||
| q(G) :: Any | |||
| MvNormalMeanScaleMatrixPrecision | out | μ(μ) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | Nothing |
| q(γ) :: Any | |||
| q(G) :: Any | |||
| MvNormalMeanScaleMatrixPrecision | G | q(out) :: Any | Nothing |
| q(μ) :: Any | |||
| q(γ) :: Any | |||
| MvNormalMeanScaleMatrixPrecision | G | q(out_μ) :: Any | Nothing |
| q(γ) :: Any | |||
| ExponentialFamily.DirichletCollection | out | μ(a) :: BayesBase.PointMass | Nothing |
| ExponentialFamily.DirichletCollection | out | q(a) :: BayesBase.PointMass | Nothing |
| ExponentialFamily.GammaShapeRate | out | μ(α) :: BayesBase.PointMass | Nothing |
| μ(β) :: BayesBase.PointMass | |||
| ExponentialFamily.GammaShapeRate | out | q(α) :: Any | Nothing |
| q(β) :: Any | |||
| ExponentialFamily.GammaShapeRate | α | q(out) :: Any | Nothing |
| q(β) :: ExponentialFamily.GammaDistributionsFamily | |||
| ExponentialFamily.GammaShapeRate | β | q(out) :: Any | Nothing |
| q(α) :: Any | |||
| BIFM | in | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | BIFMMeta |
| μ(zprev) :: BayesBase.TerminalProdArgument{<:Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T} | |||
| μ(znext) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| BIFM | out | μ(in) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | BIFMMeta |
| μ(zprev) :: BayesBase.TerminalProdArgument{<:Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T} | |||
| μ(znext) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| BIFM | znext | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | BIFMMeta |
| μ(in) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| μ(zprev) :: BayesBase.TerminalProdArgument{<:Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T} | |||
| BIFM | zprev | μ(out) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | BIFMMeta |
| μ(in) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| μ(znext) :: Union{ExponentialFamily.MultivariateNormalDistributionsFamily{T}, ExponentialFamily.MultivariateGaussianDistributionsFamily{T}} where T | |||
| OR | in1 | μ(out) :: Distributions.Bernoulli | Nothing |
| μ(in2) :: Distributions.Bernoulli | |||
| OR | in2 | μ(out) :: Distributions.Bernoulli | Nothing |
| μ(in1) :: Distributions.Bernoulli | |||
| OR | out | μ(in1) :: Distributions.Bernoulli | Nothing |
| μ(in2) :: Distributions.Bernoulli | |||
| Distributions.InverseGamma | out | μ(α) :: BayesBase.PointMass | Nothing |
| μ(θ) :: BayesBase.PointMass | |||
| Distributions.InverseGamma | out | q(α) :: Any | Nothing |
| q(θ) :: Any | |||
| Distributions.Wishart | out | μ(ν) :: BayesBase.PointMass | Nothing |
| μ(S) :: BayesBase.PointMass | |||
| Distributions.Wishart | out | μ(S) :: BayesBase.PointMass | Nothing |
| q(ν) :: Any | |||
| Distributions.Wishart | out | μ(ν) :: BayesBase.PointMass | Nothing |
| q(S) :: Any | |||
| Distributions.Wishart | out | q(ν) :: Any | Nothing |
| q(S) :: Any | |||
| AND | in1 | μ(out) :: Distributions.Bernoulli | Nothing |
| μ(in2) :: Distributions.Bernoulli | |||
| AND | in2 | μ(out) :: Distributions.Bernoulli | Nothing |
| μ(in1) :: Distributions.Bernoulli | |||
| AND | out | μ(in1) :: Distributions.Bernoulli | Nothing |
| μ(in2) :: Distributions.Bernoulli | |||
| GammaMixture{N} | switch | q(out) :: activeMP.ManyOf{<:NTuple{ | Nothing |
| q(a) :: ReactiveMP.ManyOf{<:NTuple{ | |||
| q(b) :: ExponentialFamily.GammaDistributionsFamily}} | |||
| GammaMixture | a | q(out) :: Any | Nothing |
| q(switch) :: Any | |||
| q(b) :: ExponentialFamily.GammaDistributionsFamily | |||
| GammaMixture | b | q(out) :: Any | Nothing |
| q(switch) :: Any | |||
| q(a) :: Any | |||
| GammaMixture{N} | out | q(switch) :: activeMP.ManyOf{<:NTuple{ | Nothing |
| q(a) :: ReactiveMP.ManyOf{<:NTuple{ | |||
| q(b) :: ExponentialFamily.GammaDistributionsFamily}} | |||
| Mixture | inputs | μ(out) :: Any | Nothing |
| μ(switch) :: Any | |||
| Mixture | inputs | μ(out) :: Any | Nothing |
| q(switch) :: BayesBase.PointMass | |||
| Mixture | out | μ(switch) :: activeMP.ManyOf{<:NTuple{ | Nothing |
| μ(inputs) :: Any | |||
| Mixture | out | μ(inputs) :: Any | Nothing |
| q(switch) :: BayesBase.PointMass | |||
| Mixture | switch | μ(out) :: activeMP.ManyOf{<:NTuple{ | Nothing |
| μ(inputs) :: Any | |||
| Distributions.Beta | out | μ(a) :: BayesBase.PointMass | Nothing |
| μ(b) :: BayesBase.PointMass | |||
| Distributions.Beta | out | q(a) :: BayesBase.PointMass | Nothing |
| q(b) :: BayesBase.PointMass | |||
| in1 | μ(out) :: Distributions.Bernoulli | Nothing | |
| μ(in2) :: Distributions.Bernoulli | |||
| in2 | μ(out) :: Distributions.Bernoulli | Nothing | |
| μ(in1) :: Distributions.Bernoulli | |||
| out | μ(in1) :: Distributions.Bernoulli | Nothing | |
| μ(in2) :: Distributions.Bernoulli |