Nodes implementation
In the message passing framework, one of the most important concepts is a factor node. A factor node represents a local function in a factorised representation of a generative model.
ReactiveMP.@node — Macro@node(fformtype, sdtype, interfaces_list)@node macro creates a node for a fformtype type object. To obtain a list of predefined nodes use ?is_predefined_node.
Arguments
fformtype: Either an existing type identifier, e.g.Normalor a function type identifier, e.g.typeof(+)sdtype: EitherStochasticorDeterministic. Defines the type of the functional relationshipinterfaces_list: Defines a fixed list of edges of a factor node, by convention the first element should beout. Example:[ out, mean, variance ]
Note: interfaces_list must not include names that contain _ symbol in them, as it is reserved to identify joint posteriors around the node object.
Examples
struct MyNormalDistribution
mean :: Float64
var :: Float64
end
@node MyNormalDistribution Stochastic [ out, mean, var ]
@node typeof(+) Deterministic [ out, in1, in2 ]List of available nodes
See ?is_predefined_node.
ReactiveMP.FactorNode — TypeGenericFactorNode(functionalform, interfaces)Generic factor node object that represents a factor node with a given functionalform and interfaces.
ReactiveMP.FactorNodeLocalMarginal — TypeFactorNodeLocalMarginalThis object represents local marginals for some specific factor node. The local marginal can be joint in case of structured factorisation. Local to factor node marginal also can be shared with a corresponding marginal of some random variable.
ReactiveMP.NodeInterface — TypeNodeInterfaceNodeInterface object represents a single node-variable connection.
ReactiveMP.IndexedNodeInterface — TypeIndexedNodeInterfaceIndexedNodeInterface object represents a repetative node-variable connection. Used in cases when a node may connect to a different number of random variables with the same name, e.g. means and precisions of a Gaussian Mixture node.
ReactiveMP.messagein — Functionmessagein(interface)Returns an inbound messages stream from the given interface.
ReactiveMP.messageout — Functionmessageout(interface)Returns an outbound messages stream from the given interface.
ReactiveMP.tag — Functiontag(interface)Returns a tag of the interface in the form of Val{ name(interface) }. The major difference between tag and name is that it is possible to dispath on interface's tag in message computation rule.
ReactiveMP.name — Functionname(interface)Returns a name of the interface.
ReactiveMP.interfaces — Functioninterfaces(fform)Returns a Val object with a tuple of interface names for a given factor node type. Returns nothing for unknown functional form.
ReactiveMP.getvariable — Functiongetvariable(interface)Returns a variable connected to the given interface.
ReactiveMP.inputinterfaces — Functioninputinterfaces(fform)Similar to interfaces, but returns a Val object with a tuple of input interface names for a given factor node type. Returns nothing for unknown functional form.
ReactiveMP.alias_interface — Functionalias_interface(factor_type, index, name)Converts the given name to a correct interface name for a given factor node type and index.
ReactiveMP.collect_factorisation — Functioncollect_factorisation(nodetype, factorisation)This function converts given factorisation to a correct internal factorisation representation for a given node.
ReactiveMP.collect_pipeline — Functioncollect_pipeline(nodetype, pipeline)This function converts given pipeline to a correct internal pipeline representation for a factor given node.
ReactiveMP.collect_meta — Functioncollect_meta(nodetype, meta)This function converts given meta object to a correct internal meta representation for a given node. Fallbacks to default_meta in case if meta is nothing.
See also: default_meta, FactorNode
ReactiveMP.default_meta — Functiondefault_meta(nodetype)Returns default meta object for a given node type.
See also: collect_meta, FactorNode
ReactiveMP.as_node_symbol — Functionas_node_symbol(type)Returns a symbol associated with a node type.
Adding a custom node
ReactiveMP.jl exports the @node macro that allows for quick definition of a factor node with a fixed number of edges. The example application can be the following:
struct MyNewCustomNode end
@node MyNewCustomNode Stochastic [ x, y, (z, aliases = [ d ] ) ]
# ^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^
# Node's tag/name Node's type A fixed set of edges
# Another possible The very first edge (in this example `x`) is considered
# value is to be the output of the node
# `Deterministic` - Edges can have aliases, e.g. `z` can be both `z` or `d`This expression registers a new node that can be used with the inference engine. Note, however, that the @node macro does not generate any message passing update rules. These must be defined using the @rule macro.
Node types
We distinguish different types of factor nodes in order to have better control over Bethe Free Energy computation. Each factor node has either the Deterministic or Stochastic functional form type.
ReactiveMP.Deterministic — TypeDeterministicDeterministic object used to parametrize factor node object with determinstic type of relationship between variables.
See also: Stochastic, isdeterministic, isstochastic, sdtype
ReactiveMP.Stochastic — TypeStochasticStochastic object used to parametrize factor node object with stochastic type of relationship between variables.
See also: Deterministic, isdeterministic, isstochastic, sdtype
ReactiveMP.isdeterministic — Functionisdeterministic(node)Function used to check if factor node object is deterministic or not. Returns true or false.
See also: Deterministic, Stochastic, isstochastic, sdtype
ReactiveMP.isstochastic — Functionisstochastic(node)Function used to check if factor node object is stochastic or not. Returns true or false.
See also: Deterministic, Stochastic, isdeterministic, sdtype
ReactiveMP.sdtype — Functionsdtype(object)Returns either Deterministic or Stochastic for a given object (if defined).
See also: Deterministic, Stochastic, isdeterministic, isstochastic
For example the + node has the Deterministic type:
println("Is `+` node deterministic: ", isdeterministic(sdtype(+)))
println("Is `+` node stochastic: ", isstochastic(sdtype(+)))Is `+` node deterministic: true
Is `+` node stochastic: falseOn the other hand, the Bernoulli node has the Stochastic type:
println("Is `Bernoulli` node deterministic: ", isdeterministic(sdtype(Bernoulli)))
println("Is `Bernoulli` node stochastic: ", isstochastic(sdtype(Bernoulli)))Is `Bernoulli` node deterministic: false
Is `Bernoulli` node stochastic: trueTo get an actual instance of the type object we use sdtype function:
println("sdtype() of `+` node is ", sdtype(+))
println("sdtype() of `Bernoulli` node is ", sdtype(Bernoulli))sdtype() of `+` node is Deterministic()
sdtype() of `Bernoulli` node is Stochastic()Node functional dependencies pipeline
The generic implementation of factor nodes in ReactiveMP supports custom functional dependency pipelines. Briefly, the functional dependencies pipeline defines what dependencies are need to compute a single message. As an example, consider the belief-propagation message update equation for a factor node $f$ with three edges: $x$, $y$ and $z$:
\[\mu(x) = \int \mu(y) \mu(z) f(x, y, z) \mathrm{d}y \mathrm{d}z\]
Here we see that in the standard setting for the belief-propagation message out of edge $x$, we need only messages from the edges $y$ and $z$. In contrast, consider the variational message update rule equation with mean-field assumption:
\[\mu(x) = \exp \int q(y) q(z) \log f(x, y, z) \mathrm{d}y \mathrm{d}z\]
We see that in this setting, we do not need messages $\mu(y)$ and $\mu(z)$, but only the marginals $q(y)$ and $q(z)$. The purpose of a functional dependencies pipeline is to determine functional dependencies (a set of messages or marginals) that are needed to compute a single message. By default, ReactiveMP.jl uses so-called DefaultFunctionalDependencies that correctly implements belief-propagation and variational message passing schemes (including both mean-field and structured factorisations). The full list of built-in pipelines is presented below:
ReactiveMP.DefaultFunctionalDependencies — TypeDefaultFunctionalDependenciesThis functional dependencies translate directly to a regular variational message passing scheme. In order to compute a message out of some interface, this strategy requires messages from interfaces within the same cluster and marginals over other clusters.
ReactiveMP.RequireMessageFunctionalDependencies — TypeRequireMessageFunctionalDependencies(specifications::NamedTuple)
RequireMessageFunctionalDependencies(; specifications...)The same as DefaultFunctionalDependencies, but in order to compute a message out of some edge also requires the inbound message on the this edge.
The specification parameter is a named tuple that contains the names of the edges and their initial messages. When a name is present in the named tuple, that indicates that the computation of the outbound message on the same edge must use the inbound message. If nothing is passed as a value in the named tuple, the initial message is not set. Note that the construction allows passing keyword argument to the constructor instead of using NamedTuple directly.
RequireMessageFunctionalDependencies(μ = vague(NormalMeanPrecision), τ = nothing)
# ^^^ ^^^
# request 'inbound' for 'x' we may do the same for 'τ',
# and initialise with `vague(...)` but here we skip initialisationSee also: ReactiveMP.DefaultFunctionalDependencies, ReactiveMP.RequireMarginalFunctionalDependencies, ReactiveMP.RequireEverythingFunctionalDependencies
ReactiveMP.RequireMarginalFunctionalDependencies — TypeRequireMarginalFunctionalDependencies(specifications::NamedTuple)
RequireMarginalFunctionalDependencies(; specifications...)The same as DefaultFunctionalDependencies, but in order to compute a message out of some edge also requires the marginal on the this edge.
The specification parameter is a named tuple that contains the names of the edges and their initial marginals. When a name is present in the named tuple, that indicates that the computation of the outbound message on the same edge must use the marginal on this edge. If nothing is passed as a value in the named tuple, the initial marginal is not set. Note that the construction allows passing keyword argument to the constructor instead of using NamedTuple directly.
RequireMarginalFunctionalDependencies(μ = vague(NormalMeanPrecision), τ = nothing)
# ^^^ ^^^
# request 'marginal' for 'x' we may do the same for 'τ',
# and initialise with `vague(...)` but here we skip initialisationSee also: ReactiveMP.DefaultFunctionalDependencies, ReactiveMP.RequireMessageFunctionalDependencies, ReactiveMP.RequireEverythingFunctionalDependencies
ReactiveMP.RequireEverythingFunctionalDependencies — TypeRequireEverythingFunctionalDependencies
This pipeline specifies that in order to compute a message of some edge update rules request everything that is available locally. This includes all inbound messages (including on the same edge) and marginals over all local edge-clusters (this may or may not include marginals on single edges, depends on the local factorisation constraint).
See also: DefaultFunctionalDependencies, RequireMessageFunctionalDependencies, RequireMarginalFunctionalDependencies
Node traits
Each factor node has to define the ReactiveMP.is_predefined_node trait function and to specify a ReactiveMP.PredefinedNodeFunctionalForm singleton as a return object. By default ReactiveMP.is_predefined_node returns ReactiveMP.UndefinedNodeFunctionalForm. Objects that do not specify this property correctly cannot be used in model specification.
@node macro does that automatically
ReactiveMP.PredefinedNodeFunctionalForm — TypePredefinedNodeFunctionalFormTrait specification for an object that has been marked as a valid factor node with the @node macro.
See also: ReactiveMP.is_predefined_node, ReactiveMP.UndefinedNodeFunctionalForm
ReactiveMP.UndefinedNodeFunctionalForm — TypeUndefinedNodeFunctionalFormTrait specification for an object that has not been marked as a factor node with the @node macro. Note that it does not necessarily mean that the object is not a valid factor node, but rather that it has not been marked as such. The ReactiveMP inference engine support arbitrary deterministic function as factor nodes, but they require manual specification of the approximation method.
See also: ReactiveMP.is_predefined_node, ReactiveMP.PredefinedNodeFunctionalForm
ReactiveMP.is_predefined_node — Functionis_predefined_node(object)Determines if the object has been marked as a factor node with the @node macro. Returns either PredefinedNodeFunctionalForm() or UndefinedNodeFunctionalForm().
See also: ReactiveMP.PredefinedNodeFunctionalForm, ReactiveMP.UndefinedNodeFunctionalForm
Node pipelines
ReactiveMP.AbstractPipelineStage — TypeAbstractPipelineStageAn abstract type for all custom pipelines stages
ReactiveMP.apply_pipeline_stage — Functionapply_pipeline_stage(stage, factornode, tag, stream)Applies a given pipeline stage to the stream argument given factornode and tag of an edge.
ReactiveMP.EmptyPipelineStage — TypeEmptyPipelineStage <: AbstractPipelineStageDummy empty pipeline stage that does not modify the original pipeline.
ReactiveMP.CompositePipelineStage — TypeCompositePipelineStage{T} <: AbstractPipelineStageComposite pipeline stage that consists of multiple inner pipeline stages
ReactiveMP.LoggerPipelineStage — TypeLoggerPipelineStage <: AbstractPipelineStageLogs all updates from stream into output
Arguments
output: (optional), an output stream used to print log statements
ReactiveMP.DiscontinuePipelineStage — TypeDiscontinuePipelineStage <: AbstractPipelineStageApplies the discontinue() operator from Rocket.jl library to the given pipeline
ReactiveMP.AsyncPipelineStage — TypeAsyncPipelineStage <: AbstractPipelineStageApplies the async() operator from Rocket.jl library to the given pipeline
ReactiveMP.ScheduleOnPipelineStage — TypeScheduleOnPipelineStage{S} <: AbstractPipelineStageApplies the schedule_on() operator from Rocket.jl library to the given pipeline with a provided scheduler
Arguments
scheduler: scheduler to schedule updates on. Must be compatible withRocket.jllibrary andschedule_on()operator.
ReactiveMP.schedule_updates — Functionschedule_updates(variables...; pipeline_stage = ScheduleOnPipelineStage(PendingScheduler()))Schedules posterior marginal updates for given variables using stage. By default creates ScheduleOnPipelineStage with PendingScheduler() from Rocket.jl library. Returns a scheduler with release! method available to release all scheduled updates.
List of predefined factor node
To quickly check the list of all predefined factor nodes, call ?ReactiveMP.is_predefined_node or Base.doc(ReactiveMP.is_predefined_node).
?ReactiveMP.is_predefined_nodeis_predefined_node(object)Determines if the object has been marked as a factor node with the @node macro. Returns either PredefinedNodeFunctionalForm() or UndefinedNodeFunctionalForm().
See also: ReactiveMP.PredefinedNodeFunctionalForm, ReactiveMP.UndefinedNodeFunctionalForm
Type{<:Uninformative} : Stochastic : outThe Uninformative has been marked as a valid Stochastic factor node with the @node macro with [ out ] interfaces.
Type{<:Uniform} : Stochastic : out, a (or α, left), b (or β, right)The Uniform has been marked as a valid Stochastic factor node with the @node macro with [ out, a (or α, left), b (or β, right) ] interfaces.
Type{<:NormalMeanVariance} : Stochastic : out, μ (or mean), v (or var)The NormalMeanVariance has been marked as a valid Stochastic factor node with the @node macro with [ out, μ (or mean), v (or var) ] interfaces.
Type{<:NormalMeanPrecision} : Stochastic : out, μ (or mean), τ (or invcov, precision)The NormalMeanPrecision has been marked as a valid Stochastic factor node with the @node macro with [ out, μ (or mean), τ (or invcov, precision) ] interfaces.
Type{<:MvNormalMeanCovariance} : Stochastic : out, μ (or mean), Σ (or cov)The MvNormalMeanCovariance has been marked as a valid Stochastic factor node with the @node macro with [ out, μ (or mean), Σ (or cov) ] interfaces.
Type{<:MvNormalMeanPrecision} : Stochastic : out, μ (or mean), Λ (or invcov, precision)The MvNormalMeanPrecision has been marked as a valid Stochastic factor node with the @node macro with [ out, μ (or mean), Λ (or invcov, precision) ] interfaces.
Type{<:MvNormalMeanScalePrecision} : Stochastic : out, μ (or mean), γ (or precision)The MvNormalMeanScalePrecision has been marked as a valid Stochastic factor node with the @node macro with [ out, μ (or mean), γ (or precision) ] interfaces.
Type{<:MvNormalWeightedMeanPrecision} : Stochastic : out, ξ (or xi, weightedmean), Λ (or invcov, precision)The MvNormalWeightedMeanPrecision has been marked as a valid Stochastic factor node with the @node macro with [ out, ξ (or xi, weightedmean), Λ (or invcov, precision) ] interfaces.
Type{<:Gamma} : Stochastic : out, α (or shape), θ (or scale)The Gamma has been marked as a valid Stochastic factor node with the @node macro with [ out, α (or shape), θ (or scale) ] interfaces.
Type{<:GammaInverse} : Stochastic : out, α (or shape), θ (or scale)The GammaInverse has been marked as a valid Stochastic factor node with the @node macro with [ out, α (or shape), θ (or scale) ] interfaces.
Type{<:GammaShapeRate} : Stochastic : out, α (or a, shape), β (or b, rate)The GammaShapeRate has been marked as a valid Stochastic factor node with the @node macro with [ out, α (or a, shape), β (or b, rate) ] interfaces.
Type{<:Beta} : Stochastic : out, a (or α), b (or β)The Beta has been marked as a valid Stochastic factor node with the @node macro with [ out, a (or α), b (or β) ] interfaces.
Type{<:Categorical} : Stochastic : out, pThe Categorical has been marked as a valid Stochastic factor node with the @node macro with [ out, p ] interfaces.
Type{<:MatrixDirichlet} : Stochastic : out, aThe MatrixDirichlet has been marked as a valid Stochastic factor node with the @node macro with [ out, a ] interfaces.
Type{<:Dirichlet} : Stochastic : out, aThe Dirichlet has been marked as a valid Stochastic factor node with the @node macro with [ out, a ] interfaces.
Type{<:Bernoulli} : Stochastic : out, p (or θ)The Bernoulli has been marked as a valid Stochastic factor node with the @node macro with [ out, p (or θ) ] interfaces.
Type{<:GCV} : Stochastic : y, x, z, κ, ωThe GCV has been marked as a valid Stochastic factor node with the @node macro with [ y, x, z, κ, ω ] interfaces.
Type{<:Wishart} : Stochastic : out, ν (or df), S (or scale)The Wishart has been marked as a valid Stochastic factor node with the @node macro with [ out, ν (or df), S (or scale) ] interfaces.
Type{<:InverseWishart} : Stochastic : out, ν (or df), S (or scale, Ψ)The InverseWishart has been marked as a valid Stochastic factor node with the @node macro with [ out, ν (or df), S (or scale, Ψ) ] interfaces.
typeof(dot) : Deterministic : out, in1, in2The typeof(dot) has been marked as a valid Deterministic factor node with the @node macro with [ out, in1, in2 ] interfaces.
Type{<:softdot} : Stochastic : y, θ (or theta), x, γ (or gamma)The softdot has been marked as a valid Stochastic factor node with the @node macro with [ y, θ (or theta), x, γ (or gamma) ] interfaces.
Type{<:Transition} : Stochastic : out, in, aThe Transition has been marked as a valid Stochastic factor node with the @node macro with [ out, in, a ] interfaces.
Type{<:AR} : Stochastic : y (or out), x, θ, γThe AR has been marked as a valid Stochastic factor node with the @node macro with [ y (or out), x, θ, γ ] interfaces.
Type{<:BIFM} : Deterministic : out, in, zprev, znextThe BIFM has been marked as a valid Deterministic factor node with the @node macro with [ out, in, zprev, znext ] interfaces.
Type{<:BIFMHelper} : Stochastic : out, inThe BIFMHelper has been marked as a valid Stochastic factor node with the @node macro with [ out, in ] interfaces.
Type{<:Probit} : Stochastic : out, inThe Probit has been marked as a valid Stochastic factor node with the @node macro with [ out, in ] interfaces.
Type{<:Poisson} : Stochastic : out, l (or λ)The Poisson has been marked as a valid Stochastic factor node with the @node macro with [ out, l (or λ) ] interfaces.
Type{<:ContinuousTransition} : Stochastic : y, x, a, WThe ContinuousTransition has been marked as a valid Stochastic factor node with the @node macro with [ y, x, a, W ] interfaces.
Type{<:HalfNormal} : Stochastic : out, v (or var, σ²)The HalfNormal has been marked as a valid Stochastic factor node with the @node macro with [ out, v (or var, σ²) ] interfaces.
Type{<:Flow} : Deterministic : out, inThe Flow has been marked as a valid Deterministic factor node with the @node macro with [ out, in ] interfaces.
typeof(+) : Deterministic : out, in1, in2The typeof(+) has been marked as a valid Deterministic factor node with the @node macro with [ out, in1, in2 ] interfaces.
typeof(-) : Deterministic : out, in1, in2The typeof(-) has been marked as a valid Deterministic factor node with the @node macro with [ out, in1, in2 ] interfaces.
typeof(*) : Deterministic : out, A, inThe typeof(*) has been marked as a valid Deterministic factor node with the @node macro with [ out, A, in ] interfaces.
Type{<:AND} : Deterministic : out, in1, in2The AND has been marked as a valid Deterministic factor node with the @node macro with [ out, in1, in2 ] interfaces.
Type{<:OR} : Deterministic : out, in1, in2The OR has been marked as a valid Deterministic factor node with the @node macro with [ out, in1, in2 ] interfaces.
Type{<:NOT} : Deterministic : out, inThe NOT has been marked as a valid Deterministic factor node with the @node macro with [ out, in ] interfaces.
Type{<:IMPLY} : Deterministic : out, in1, in2The IMPLY has been marked as a valid Deterministic factor node with the @node macro with [ out, in1, in2 ] interfaces.